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MAS NMR PROBLEM

Aim: First comparison between *-product approach and well established numerical
methods for the solution of non-autonomous ODEs.

Case Study: Solid-state Nuclear magnetic resonance (NMR) spectroscopy with
magic-angle spinning (MAS).

B
y
} 54.7° Schrédinger equation
{(ftz/;(t) = —iH(t)Y(t), t>0
kO ¥(0) = tho
’\ ,\ sampie where H is the time-dependent
- Seianing Hamiltonian operator.
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GENERAL PROBLEM

General Problem

{;tu(t):A(t)u(t), te(to,T)
u(to) = ug

with time-dependent coefficients A(t).

Difficulty: Analytic expression not always available

— Role of numerical approaches is crucial
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THEORETICAL BACKGROUND

[Pozza, Van Buggenhout, 2023]

Problem

%ﬁ(t)=f(t)ﬁ(t), i(-1)=1, te[-1,1]

. . 0, ift<s
e Heaviside step function: ©(t—s) =
1, otherwise

o Ag = set of all scalar distribution of the kind f(t,s) = f(t,s)O(t - s), with
analytic function

e *-product:

1
f(t,S)*g(t,S)l=[Ig(t,T)f(T,S)dT, f,ge Ao, t,se[-1,1]

e x-identity: Dirac delta distribution §(t —s)

e x-expression of the solution:
d
au(t,s) =f(t,s)u(t,s), u(s,s)=1, t,se[-1,1]

u(t,s) =O(t-s) * Ru(F)(t,s), Re(F)(t,5)=08(t-s)+ > F*(¢ts)

k>1
a(t) = u(t,-1)



CONNECTION WITH MATRIX ALGEBRA

Expansion in Legendre polynomials:

e For a function f: f(t) = Yorodpd(t), with ag = f_ll F(t)pg(t)dt
— For f analytic, |ag|< Cp=91, p>1

e For a distribution f € Ag:
f(t,s) =2 > fepk(t)pe(s), forevery t#s, tse[-1,1]
k=0£=0
with fi o = 2 [} £(7,p)p(7)pe(p)dpdT

foo  fo
— Fo= ], = fio A1 fip
k=0 fho ha fp
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CONNECTION WITH MATRIX ALGEBRA

We can express the coefficients {ck } k>0 of the Legendre expansion of the solution in
terms of the coefficient matrix F:

<o po(-1)
C=T1a-F)? pi(=1)

p2(-1)

with T the coefficient matrix of the Heaviside function.

Truncated Matrix Problem

1. Construct Fy = [fk’/]yzzlo, i.e., construct the matrix of Fourier coefficients;
2. Solve (I- Fp)x = ¢(-1), i.e., solve a linear system;

T . .
3. Compute Tyx = [co cq o CM—l] , i.e., compute a matrix-vector
product.
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SYSTEM OF ODEs

Problem
%u(t) = A(t)O(t-s)u(t), u(-1)=uy, te[-1,1]

where A(t) is an analytic matrix-valued function over [-1,1].

> u(t) ~ (In ® dum (1) T Tar) (Iiw — Amr) ™ (10 ® i (-1))
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SYSTEM OF ODEs

Problem
%u(t) = A(t)O(t-s)u(t), u(-1)=uy, te[-1,1]

where A(t) is an analytic matrix-valued function over [-1,1].

> u(t) ~ (In ® dum (1) T Tar) (Iiw — Amr) ™ (10 ® i (-1))

If A(t) = 29_, Akfi(t), then Ay = T Ac® FF

d
X =S FOXAT = gm(-1)uf, x = vec(X)
k=1

d
k) T (an, T
Xns1 = > Fy) XoAl + dm(-1)ug
k=1
e Use low-rank approximations, i.e., X, ~ V, W,ﬁ, Vi, W, € (CNX’, r<<M

[Pozza, Van Buggenhout, 2023]
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MAGNUS EXPANSION

The Magnus Expansion provides the solution of

Lu(t) = A(t)u(t), te(0,T)
u(0) = up

as the exponential of an infinite series
u(t) = ey, Q(t) = > Qm(t)
m=1
where Qpn(t) is the m-th nested integral containing m— 1 nested commutator of A(t).
t
Ql(t) = /0 dtlA(fl),
1 t ty
a(t) = 5 fo dty fo dts[A(t1).A(t2)],
1 rt ty t
Qi(e) = = [t [ty [ dts [A(t), [A(t2), ACt)]] + [[A(t), A(t2) ], A(t:)]
0 0 0

[Alvermann, Fehske, 2011]
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MAGNUS INTEGRATORS

Idea

e Truncate the infinite series

e Use quadrature formula to estimate integrals in the Magnus Expansion
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MAGNUS INTEGRATORS

Idea

e Truncate the infinite series

e Use quadrature formula to estimate integrals in the Magnus Expansion

Nested integrals — Expand A(t) in a series of (Shifted) Legendre Polynomials. For a

fix 7:

A(t):%éAnP,,,l(E)JrO(TN”), An:(2n—1)fOTA(t)P,,,1(£)dt, t e [0,7].

— Reduce the nested integrals to single integrals by symmetry and orthogonality

[Alvermann, Fehske, Blanes, Casas]
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COMMUTATOR-FREE EXPONENTIAL (CFE) INTEGRATORS

Generalization of the Splitting Methods, but with significantly less exponentials.
Aim

Avoid commutators to decrease the computational effort

~(N) 7y Q; .Q s
e/ (r)=€le™... e

M=

Q= finAn, Vi=1,...,s

n=1

o Completely determined by the choice of the coefficient f; ,

e For a prescribed order, f; , can be found through order conditions

[Alvermann, Fehske, Blanes, Casas]
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QUADRATURE FORMULAS

Gauss - Legendre quadrature

1 M
/0 F(x)dx ~ > Winf(xm)
m=1

M nodes xi, ..., xy which are the zeros of the (shifted) Legendre polynomial Pp;(x)
and weights wy, ..., wy
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QUADRATURE FORMULAS

Gauss - Legendre quadrature

1 M
/0 F(x)dx ~ > Winf(xm)
m=1

M nodes xi, ..., xy which are the zeros of the (shifted) Legendre polynomial Pp;(x)
and weights wy, ..., wy

= We can approximate the Legendre coefficients An(t)

N/2+1
Ap~(2n-1)7 Z Wm Pn-1(xm)A(XmT)
m=1
We obtain Q; as a linear combination of A(t) at different time xm7 with new

coefficients
N/2+1

8i,m = Wm Z (2n- 1)Pn—1(Xm)fi,n-

n=1
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APPROXIMATION OF A MATRIX EXPONENTIAL

We have reduced the problem of finding a solution to the non-autonomous ODE to a
computation of one or multiple exponentials of a matrix.

Approximation of the matrix exponential e

e Padé Approximation Rpq(M) = [Dpg(M)] ™1 Npg(M)

e Scaling and Squaring e = (e%)n

[Moler, Van Loan, 2003]
Approximation of the action of the matrix exponential on a vector eM¢

e Scaling/Squaring - like strategy Z; 1 = rm(s *M)Z;, Zy=¢

o Krylov subshace methods e"¢ ~ ||€]2 Vineme;

o Chebyshev technique e ™ ~ Y™ ¢, Q,(TM)

[Al-Mohy, Higham, Saad]
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BLOCH-SIEGERT DYNAMICS: DESCRIPTION

%u(t) =—iHps(t)u(t), wu(0)=uy, te[0,27/w,]

wo/2 28 cos(wrt)]

Hes = 23 cos(wrt) —wp/2

e Resonant: wg = wy
e Strong-coupling B/wr > 1
e w, =20000 and 8 =1.2w,

e up = random vector (randn)

[Giscard, Bonhomme, 2020]
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BLOCH-SIEGERT DYNAMICS: RESULTS

Taking the Runge-Kutta (8,9) method with tolerance 10712 (0de89) as reference, we
see that the -solution computed with tolerance 10712 is reliable

Realpart of the solsion

e Reference: *-solution with
tol = 10712
e *-process with tol = 107*
<« e Runge-Kutta (8,9) with
tol = 1073

e Runge-Kutta (7,8) with
tol = 1073
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DIPOLAR INTERACTIONS IN ROTOR FRAME: DESCRIPTION

H(t) = Hics + Hoo(t), te[0, -]

Ns
Hics = Y, Qucl,
k=1

Ns—1 Ns 2 . 1
Hop=8 5 > (Z e’"“*wcnw))T[2/k,/qz—<lkxqu+/ky/qy>]

r

k=1 gq=k+1 \n=-2 kq
e Ns = number of spins e Q, = chemical shift differences
e Ci(B)=C1(B) = —2—\1/5 sin(28) (— randomly generated)
G(B) = C2(B) = %sinQ(ﬂ) e ryq = interspin distance between spins

k and g (— cationic tin oxo-cluster)

e w,=20000, B=7/4and y=m

e ¢ = fixed constant

e ug randomly generated

0 1 0 i 1 0
I =l ®ox®onei, ox =y ol oy =f. gl 2=l

[Malaer, et al., 2019] [Bak, et al., 2000]
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DIPOLAR INTERACTIONS IN ROTOR FRAME: RESULTS

e Ns=6
The accuracy is governed
by the parameter 7,M

o Reference:

N
t

= ™ N Rt *-process,
tol = 10713
Accuracy vs T GNI: Accuracy vs Time
e x-process, tol =107*
e 6-th order CFEI with
o [ T~——— 5 exponentials
- / e 4-th order CFEI with
1A / 2 exponentials
\n / e 6-th order Magnus
: ‘} Integrator
E— v ==
Accuracy vs M *-process: Accuracy vs Time
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DIPOLAR INTERACTIONS IN ROTOR FRAME:

RESULTS

o Ns=
Accuracy Method Parameter Total computational time
* -process M=23 0.19
s M6 =103 0.0463s
10~
CF6:50pt T=1071 0.1324s
CF4:2 7=10"1 0.0701s
* -process M=24 0.1370s
. MI6 T=14.10" 10.3845s
10"
CF6:50pt T<107° > 540s
CF4:2 7<107° >220s
. * -process M =30 0.C
10™
MI6 7=10"5 149.9658s
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DIPOLAR INTERACTIONS IN ROTOR FRAME: RESULTS

Time

MI6 and x-process: Time vs Number of spins

MNumber of spins
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POSSIBLE DEVELOPMENTS

e Use more efficient implementations of Geometric Numerical Integrators

Consider other methods for comparison

Consider more complicated NMR problems
e Comparison with commonly-used software in quantum chemistry, e.g. SIMPSON

e Consider experiment data totally linked to real-world problems
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Thank you!

Lorenzo Lazzarino

20



BLOCH-SIEGERT DYNAMICS: RESULTS

Decay phenomenon

”~/.-%‘/
P, e Tolerance: 10712
g
= e M=100
'\ma;-m«: o N=24

Decay of the Legendre coefficients
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