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INTRODUCTION

NUMERICAL LINEAR ALGEBRA

We devise and analyse methods for:

• Linear System: A x = b

• Eigenvalue Problem: A x = λ x

(•) Singular Value Decomposition:

� Find (approximate) singular subspaces
� Find (approximate) singular values
� Low-rank approximations
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How?

� Complexity

� Accuracy

� Stability

� Use of inputs (e.g.
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INTRODUCTION

NLA TOOLS

� ∥A∥F =
√∑

i

∑
j |aij |2, ∥A∥2 = supx

∥Ax∥2
∥x∥2

, with ∥x∥2 =
√

|x1|2 + · · ·+ |xn|2

� Orthogonal matrix: Q∗m

m

Q = Im = Q Q∗

� Orthonormal matrix: Q∗n

m

Q = In

� QR factorization: For any A ∈ Rm×n there exists a factorization Am

n

= Qm

n

Rn

n

where Q is orthonormal and R is upper triangular.
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INTRODUCTION

SINGULAR VALUE DECOMPOSITION

Singular Value Decomposition (SVD)

Any matrix A has the decomposition (assume m ≥ n):

Am

n

= Um

n

Σn

n

V ∗n

n

=
∑n

i=1 σiuiv
∗
i

where Σ = diag(σ1, . . . , σn), with (σmax :=)σ1 ≥ · · · ≥
σn ≥ 0, and U,V are orthonormal matrices, that is, U∗U =
V ∗V = In.

] Sec. 2.4 (Golub, Van Loan)
Lect. 4 (Trefethen, Bau, 2022)
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Am
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= Um

n
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i=1 σiuiv
∗
i

where Σ = diag(σ1, . . . , σn), with (σmax :=)σ1 ≥ · · · ≥
σn ≥ 0, and U,V are orthonormal matrices, that is, U∗U =
V ∗V = In.

] Sec. 2.4 (Golub, Van Loan)
Lect. 4 (Trefethen, Bau, 2022)

Existance:
Always, from eigenvalues of A∗A

Uniqueness:

� Singular vectors

• Can be fliped by signs
• Multiple singular values

� Singular values

• Always unique
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n

= Um

n
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n
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n
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i=1 σiuiv
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i

where Σ = diag(σ1, . . . , σn), with (σmax :=)σ1 ≥ · · · ≥
σn ≥ 0, and U,V are orthonormal matrices, that is, U∗U =
V ∗V = In.

] Sec. 2.4 (Golub, Van Loan)
Lect. 4 (Trefethen, Bau, 2022)

� σi =
√

λi (A∗A), for i = 1, . . . n

� ∥A∥2 = σmax and ∥A∥2F =
∑n

i=1 σ
2
i

� ”full” SVD: A =
[
U U⊥

] [Σ
0

]
V ∗

� σi (A) = σi (Q1AQ2) for any Q1,Q2

orthogonal

� Can be computed by, e.g.,
Golub-Kahan bi-diagonalization
cost O(mn2)
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INTRODUCTION

SINGULAR VALUE DECOMPOSITION · Why do we care?

It’s beautiful!

Theoretical Beauty

� Existance

� Info about: norms, rank, subspaces

� Low-rank optimality

� reduce difficulties of problems:
Linear system, eigenvalue problem, inverse
problem

� Pseudoinverse

] Example by Eric Thomson, definetly worth having
a look at
http://neurochannels.blogspot.com/2008/02/visualizing-

svd.html

Ax

UΣV ∗x

Σ(V ∗x)

V ∗x
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INTRODUCTION

SINGULAR VALUE DECOMPOSITION · Why do we care?

It’s beautiful!

Applied Beauty

� Quantum information

� Immunology

� Molecular dynamics

� Information retrieval

� Pattern Recognition

� Weather forecast

� Astrodynamics

� Small-angle scattering
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INTRODUCTION

SINGULAR VALUE DECOMPOSITION · Why do we care?

It’s beautiful!

Applied Beauty

� Choosing a Pizzeria

300 samples measuring 7 features of Pizze
from 10 different Pizzerie!

] Brilliant example by Joachim Schork, see
https://statisticsglobe.com/principal-
component-analysis-pca

Pizzeria water protein fat ash sodium carbohydrates calories

A 30.49 21.28 41.65 4.82 1.64 1.76 4.67
A 32.20 19.25 43.42 4.62 1.50 0.51 4.70

.

.

.

B 50.33 13.96 29.25 3.42 0.96 3.04 3.31

.

.

.

C 49.10 24.53 21.08 2.84 0.34 2.45 2.98

.

.

.

D 47.45 22.37 20.97 4.06 0.70 5.15 2.99

.

.

.

J 44.91 11.07 17.00 2.49 0.66 25.36 2.91
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PROBLEM SETTING AND CLASSICAL APPROACHES

PROBLEM SETTING

Given Ũ and/or Ṽ approximations of the leading singular subspaces of A


r

n Ṽ

,


r + ℓ

m Ũ


AIM: Approximate the leading singular values {σi (A)}ri=1

Ũ and Ṽ could be obtained by:

� Subspace iteration

� Randomized techniques

� ...

Main message:

� Ũ or Ṽ $ (one-sided) SVD

� Ũ and Ṽ $ generalized Nyström

� Multiple passes with A $ HMT
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PROBLEM SETTING AND CLASSICAL APPROACHES

CLASSICAL APPROACHES · Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

σi (A) ≈ σi (Ũ
∗AṼ ) =: σi (ARR,Ṽ ,Ũ)

� Nr +O(mr2) +O(r3)

� Single-pass

� 1 multiplication by A

] (Dax, 2012)
(Saad, 2011)
(Xin-guo, 1992)

(one-sided) SVD approximations

σi (A) ≈ σi (AṼ ) =: σi (ASVD,Ṽ )

� Nr +O(mr2)

� Single-pass

� 1 multiplication by A

Q1 =
[
Ũ Ũ⊥

]
, Q2 =

[
Ṽ Ṽ⊥

]
Ā = Q∗

1 AQ2

σi (ARR,Ṽ ,Ũ) = σi (Ā
RR,

[
Ir
0

]
,

[
Ir+ℓ
0

])|

= σi (Ā11) = σi

([
Ā11 0
0 0

])
Ã = AQ2 =

[
Ã1 Ã2

]
σi (ASVD,Ṽ ) = σi (Ã

SVD,

[
Ir
0

])

= σi (
[
Ã1 0

]
)

L.LAZZARINO EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES 10th Oct. ’24 8 / 28



PROBLEM SETTING AND CLASSICAL APPROACHES

CLASSICAL APPROACHES · Rayleigh Ritz and (one-sided) SVD approximations

Rayleigh Ritz (RR)

σi (A) ≈ σi (Ũ
∗AṼ ) =: σi (ARR,Ṽ ,Ũ)
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Ṽ Ṽ⊥

]
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PROBLEM SETTING AND CLASSICAL APPROACHES

CLASSICAL APPROACHES · Rayleigh Ritz and (one-sided) SVD approximations · Accuracy

Rayleigh Ritz (RR)

σi (A) ≈ σi (Ũ
∗AṼ ) =: σi (ARR,Ṽ ,Ũ)

] (Dax, 2012)
(Saad, 2011)
(Xin-guo, 1992)

(one-sided) SVD approximations

σi (A) ≈ σi (AṼ ) =: σi (ASVD,Ṽ )

Not bad...
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BUT,
what if we could have this?
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TECHNIQUES FROM: (RANDOMIZED) LOW-RANK APPROXIMATIONS

(NUMERICAL) RANK

� A has rank k if there exists E and F such that: Am

n

= Em

k

F∗k

n

• rank = number of non-zero singular values

A† := V diag(σ−1
1 , . . . , σ−1

k , 0, . . . , 0)U∗

� A has ϵ-rank k if there exists E and F such that: ∥A− EF∗∥ ≤ ϵ

• ϵ-rank = number of singular values greater than ϵ
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TECHNIQUES FROM: (RANDOMIZED) LOW-RANK APPROXIMATIONS

(RANDOMIZED) LOW-RANK APPROXIMATIONS

Given a fix rank r , find E ∈ Rm×r and F ∈ Rn×r such that A ≈ EF∗

Ar =
r∑

i=1

σiuiv
∗
i

is the best rank-r approximation of A in both 2-norm and F-norm

� ∥A− Ar∥2 = σr+1

� ∥A− Ar∥F =
√

σ2
r+1 + · · ·+ σ2

rank(A)

Randomized Approach

Use randomization for a model reduction while
(approximately) preserving properties of the

big problem

Sketching $ Random Embedding

⌣ Reduced costs

⌣ (often) near-optimal
solutions

7 Different outputs

7 Can fail (with
small probability)
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TECHNIQUES FROM: (RANDOMIZED) LOW-RANK APPROXIMATIONS

RANDOMIZED SVD (HMT)

Randomized SVD

A ≈ (AΩ)(AΩ)†A =: AHMT ,Ω

] (Clarkson, Woodruff, 2017)
(Halko, Martinsson, Tropp, 2011)
(Rokhlin, Szlam, Tygert, 2009)

1. Choose Ω ∈ Rn×r 2. Sketch: X = AΩ 3. [Q,∼] = qr(X ,0) 4. AHMT ,Ω = Q(Q∗A)

� Nr +O(mr2) + Ñr

� Double-pass

� 2 multiplications by A

r̂ ≤ r − 2

E∥A− AHMT ,Ω∥F ≤
√

1 +
r

r − r̂ − 1
∥A− Abest,r̂∥F

(Halko, Martinsson, Tropp, 2011)

Stability

Stable under rounding errors if computed with
Householder QR

(Connolly, Higham, Pranesh, 2022)
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TECHNIQUES FROM: (RANDOMIZED) LOW-RANK APPROXIMATIONS

GENERALIZED NYSTRÖM APPROXIMATION

Generalized Nyström

A ≈ AΩ1(Ω∗
2AΩ1)†Ω∗

2A =: AGN,Ω1,Ω2

] (Clarkson, Woodruff, 2009)
(Nakatsukasa, 2020)
(Woolfe, Liberty, Rokhlin, Tygert, 2008)

1. Choose Ω1 ∈ Rn×r ,Ω2 ∈ Rm×(r+ℓ) 2. Two-side Sketch: X = AΩ1 and Y = Ω∗
2A

3. [Q,R] = qr(YΩ1,0) 4. AGN,Ω1,Ω2
= (XR−1)(Q∗Y )

� N2r+ℓ +O(r3 + (m + n)r2)

� Single-pass

� 2 multiplications by A
r̂ ≤ r − 2

E∥A−AGN,Ω1,Ω2
∥F ≤

√
1 +

r + ℓ

ℓ− 1

√
1 +

r

r − r̂ − 1
∥A−Abest,r̂∥F

(Tropp et al., 2017),(Nakatsukasa, 2020)

Stability

(AΩ1)(Ω
∗
2AΩ1)

†
ϵΩ

∗
2A

(Nakatsukasa, 2020)
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ANALYSIS AND COMPARISON
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ANALYSIS AND COMPARISON

GN APPROXIMATION AND EXTRACTING SINGULAR VALUES

Generalized Nyström

Given approximations Ũ and Ṽ to the leading singular subspaces,

σi (A) ≈ σi

(
AṼ (Ũ∗AṼ )†Ũ∗A

)
=: σGN

i

σi ( AṼ Ũ∗AṼ

†

Ũ∗A )

N2r+ℓ
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σi ( QL RL Ũ∗AṼ

†

R∗
R Q∗

R
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)
=: σGN

i

σi ( RL R†
p Q∗

p R∗
R )

N2r+ℓ +O((m + n)r2)

L.LAZZARINO EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES 10th Oct. ’24 14 / 28



ANALYSIS AND COMPARISON

MOTIVATIONAL COMPARISON

Single-pass methods

� σSVD
i = σi (AṼ )

� σRR
i = σi (Ũ

∗AṼ )

� σGN
i = σi

(
AṼ (Ũ∗AṼ )†Ũ∗A

)

0 50 100 150 200
10

-20

10
-15

10
-10

10
-5

L.LAZZARINO EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES 10th Oct. ’24 15 / 28



ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY

GN and Orthogonal Transformations

Consider T1 and T2 orthogonal matrices, then

T∗
1 (MGN,Ṽ ,Ũ)T2 = (T∗

1 MT2)GN,T∗
2 Ṽ ,T∗

1 Ũ

For any orthonormal Ṽ and Ũ, we can:

1. Define Q1 =
[
Ũ Ũ⊥

]
Q2 =

[
Ṽ Ṽ⊥

]
;

2. Consider the transformed matrix: Q∗
1 AQ2;

3. Consider the transformed GN approximation:

Q∗
1 AGN,Ṽ ,ŨQ2 = (Q∗

1 AQ2)GN,Q∗
2 Ṽ ,Q∗

1 Ũ = (Q∗
1 AQ2)

GN,

[
Ir
0

]
,

[
Ir+ℓ
0

] .

→ |σi (A)− σi (AGN,Ṽ ,Ũ)| = |σi (Q
∗
1 AQ2)− σi ((Q

∗
1 AQ2)

GN,

[
Ir
0

]
,

[
Ir+ℓ
0

])|
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ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY · Express AGN as a perturbation of the original matrix A

Ṽ :=


r

r Ir
−

n − r 0

, Ũ :=



r + ℓ

r + ℓ Ir+ℓ

−

m − (r + ℓ) 0


, A :=



r

r + ℓ A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − (r + ℓ) A21 A22


] (Tropp, Webber, 2023)

AGN,Ṽ ,Ũ = AṼ (Ũ∗AṼ )† Ũ∗A
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A11

−

A21

 (Ũ∗AṼ )† Ũ∗A
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, Ũ :=



r + ℓ

r + ℓ Ir+ℓ

−

m − (r + ℓ) 0


, A :=



r

r + ℓ A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − (r + ℓ) A21 A22



AGN,Ṽ ,Ũ =
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r
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MM†M = M

AGN,Ṽ ,Ũ =


A11

−

A21

 (A11)
†
[

A11 | A12

]
=



A11A
†
11A11 |

− − −−−− − −−−−−−
|
|
|
|
|
|

A11A
†
11A12

A21A
†
11A11 A21A

†
11A12
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ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY · Express AGN as a perturbation of the original matrix A

Ṽ :=


r

r Ir
−

n − r 0

, Ũ :=



r + ℓ

r + ℓ Ir+ℓ

−

m − (r + ℓ) 0


, A :=



r

r + ℓ A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − (r + ℓ) A21 A22


M has linearly independent columns

=⇒ M†M = M−1M = M

AGN,Ṽ ,Ũ =


A11

−

A21

 (A11)
†
[

A11 | A12

]
=



= A11︷ ︸︸ ︷
A11A

†
11A11 |

− − −−−− − −−−−−−
|
|
|
|
|
|

A11A
†
11A12

A21A
†
11A11 A21A

†
11A12
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r

r Ir
−

n − r 0
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r + ℓ

r + ℓ Ir+ℓ

−

m − (r + ℓ) 0


, A :=



r

r + ℓ A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − (r + ℓ) A21 A22



AGN,Ṽ ,Ũ =


A11

−

A21

 (A11)
†
[

A11 | A12

]
=



A11 |
− − −−−− − −−−−−−

|
|
|
|
|
|

A11A
†
11A12

A21A
†
11A11︸ ︷︷ ︸

= A21

A21A
†
11A12
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ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY · Express AGN as a perturbation of the original matrix A

Ṽ :=


r

r Ir
−

n − r 0

, Ũ :=



r + ℓ

r + ℓ Ir+ℓ

−

m − (r + ℓ) 0


, A :=



r

r + ℓ A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − (r + ℓ) A21 A22



AGN,Ṽ ,Ũ = A−



0 |
− − −−−− − −−−−−−

|
|
|
|
|
|

A12 − A11A
†
11A12

0 A22 − A21A
†
11A12


=: A− EGN
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ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY · Express AGN as a perturbation of the original matrix A

Ṽ :=


r

r Ir
−

n − r 0

, Ũ :=



r

r I r

−

m − r 0


, A :=



r

r A11 |
− − − −

|
|
|
|
|
|

n − r

A12

m − r A21 A22



No-oversample (ℓ = 0)

$ A12 − A11A
†
11A12 = 0, but change of
block sizes!

AGN,Ṽ ,Ũ = A−



0 |
− − −−−− − −−−−−−

|
|
|
|
|
|

0

0 A22 − A21A
†
11A12


=: A− EGN
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ANALYSIS AND COMPARISON

GN AND MATRIX PERTURBATION THEORY · Weyl’s bound

Weyl’s Theorem

For any matrix M we have that

|σi (M)− σi (M + E)| ≤ ∥E∥2

] Cor. 7.3.5 (Horn, Johnson, 2012)
Cor. I.4.31 (Stewart, 1998)
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ANALYSIS AND COMPARISON Matrix perturbation theory result

RESULT ON SYMMETRIC MATRICES

Consider the n × n symmetric matrices

H :=

[
H11 H∗

21
H21 H22

]
, Ĥ := H +

[
E11 E∗

21
E21 E22

]
=: H + E .

] Theorem 3.2 (Nakatsukasa, 2012)

Define

τi =

(
∥H21∥2 + ∥E21∥2

minj |λi (H)− λj (H22)| − 2∥E∥2

)
.

Then, for each i , if τi > 0, then

|λi (H)− λi (Ĥ)| ≤ ∥E11∥2 + 2∥E21∥2τi + ∥E22∥2τ2i ,

� τi < 1 necessary to be better than Weyl

� If ∥E11∥2 ≪ ∥E∥2 and λi is far from the spectrum of H22 then τi ≪ 1

� If E11 = E21 = 0 and H21 is small, then λi is particularly insensitive to the perturbation E22

→ bound proportional to ∥E22∥2∥H21∥22
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

Generalize (Nakatsukasa, 2012) to the 2× 2 block matrix:

G :=

[
G1 B
C G2

]
,

and its perturbation:

Ĝ := G +

[
F11 F12
F21 F22

]
=: G + F .

Strategy: Use a technique in (Li, Li, 2005)
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

] Thm. 7.3.3 (Horn, Johnson, 2012)
Thm. I.4.2 (Stewart, Sun, 1990)

Jordan-Wielandt (JW) Theorem

Let {σi (M)}ni=1 be the singular values of a matrix M ∈ Cm×n, with m ≥ n. Then,
the symmetric matrix [

0 M
M∗ 0

]
(1)

has eigenvalues ±σ1(M), . . . ,±σn(M) and m − n zeros eigenvalues.

G → GJW :=

 0 | G
− − −
G∗ | 0

 =


0 0 | G1 B
0 0 | C G2

− − − − −
G∗
1 C∗ | 0 0

B∗ G∗
2 | 0 0
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

Obtain a matrix similar to GJW suitable for (Nakatsukasa, 2012) and with blocks
reasonably related to the blocks of G


0 0 | G1 B

0 0 | C G2

− − − − −
G ∗
1 C ∗ | 0 0

B∗ G ∗
2 | 0 0
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

Obtain a matrix similar to GJW suitable for (Nakatsukasa, 2012) and with blocks
reasonably related to the blocks of G


0 G1 | 0 B

G ∗
1 0 | C ∗ 0

− − − − −
0 C | 0 G2

B∗ 0 | G ∗
2 0

 =: Gp

Note: λi (Gp) = λi (GJW )
JW
= ±σi (G)
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

Obtain a matrix similar to GJW suitable for (Nakatsukasa, 2012) and with blocks
reasonably related to the blocks of G

Gp =


0 G1 | 0 B
G∗
1 0 | C∗ 0
− − − − −
0 C | 0 G2

B∗ 0 | G∗
2 0



Ĝp = Gp+


0 F11 | 0 F12

F∗
11 0 | F∗

21 0
− − − − −
0 F21 | 0 F22

F∗
12 0 | F∗

22 0

 =: Gp + Fp .
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

Define

τi =


∥∥∥∥[ 0 C

B∗ 0

]∥∥∥∥
2

+

∥∥∥∥[ 0 F21

F∗
12 0

]∥∥∥∥
2

minj |λi − λj

([
0 G2

G∗
2 0

])
| − 2 ∥Fp∥2

 .

Then, for each i , if τi > 0:

|λi (Gp) − λi (Ĝp)| ≤
∥∥∥∥[ 0 F11

F∗
11 0

]∥∥∥∥
2

+ 2

∥∥∥∥[ 0 F21

F∗
12 0

]∥∥∥∥
2

τi +

∥∥∥∥[ 0 F22

F∗
22 0

]∥∥∥∥
2

τ
2
i ,
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

�

∥∥∥∥[ 0 M1

M2 0

]∥∥∥∥
2

= max{∥M1∥2, ∥M2∥2};

� Jordan-Wielandt theorem

=⇒ |λi (Gp)− λi (Ĝp)| = |σi (G)− σi (Ĝ)|,

for i = 1, . . . , n;

� By Jordan-Wielandt theorem and by construction of Fp :

∥Fp∥2 = ∥F∥2
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT · Generalization of (Nakatsukasa, 2012)

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

] Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Consider the matrices

G :=

[
G1 B
C G2

]
, Ĝ := G +

[
F11 F12

F21 F22

]
=: G + F ,

and define

τi =

(
max{∥B∥2, ∥C∥2}+max{∥F12∥2 , ∥F21∥2}

minj |σi (G)− σj (G2) | − 2 ∥F∥2

)
.

Then, for each i , if τi > 0, then

|σi (G)− σi (Ĝ)| ≤ ∥F11∥2 + 2max{∥F12∥2 , ∥F21∥2}τi + ∥F22∥2 τ
2
i ,
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ANALYSIS AND COMPARISON Matrix perturbation theory result

FROM THE SYMMETRIC TO THE GENERAL RESULT · Generalization of (Nakatsukasa, 2012)

General case

↓
Transform to symmetric

↓
Obtain necessary

structure

↓
Apply symmetric Result

↓
Transform back

↓
General Result

] Theorem 4.1 (L.,Al Daas, Nakatsukasa,2024)

Consider the matrices

G :=

[
G1 B
C G2

]
, Ĝ := G +

[
F11 F12

F21 F22

]
=: G + F ,

and define

τi =

(
max{∥B∥2, ∥C∥2}+max{∥F12∥2 , ∥F21∥2}

minj |σi (G)− σj (G2) | − 2 ∥F∥2

)
.

Then, for each i , if τi > 0, then

|σi (G)− σi (Ĝ)| ≤ ∥F11∥2 + 2max{∥F12∥2 , ∥F21∥2}τi + ∥F22∥2 τ
2
i ,

� Generalization to Block Tridiagonal: A Singular Value is insensitive to blockwise perturbation if it is
well-separated from the spectrum of the diagonal blocks near the perturbed blocks.
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ANALYSIS AND COMPARISON

BOUND ON GN APPROXIMATION ERROR · Derivation

• A, Ṽ , Ũ → AGN = AṼ (Ũ∗AṼ )†Ũ∗A

• Define

Ā = [Ũ Ũ⊥]∗A[Ṽ Ṽ⊥], ĀGN =
(
[Ũ Ũ⊥]∗A[Ṽ Ṽ⊥]

)
GN,

[
Ir
0

]
,

[
Ir
0

]

=⇒ ĀGN = Ā−
[
0 0

0 Ā22 − Ā21Ā
†
11Ā12

]
=: Ā− EGN
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BOUND ON GN APPROXIMATION ERROR · Derivation

• A, Ṽ , Ũ → AGN = AṼ (Ũ∗AṼ )†Ũ∗A

• Define

Ā = [Ũ Ũ⊥]∗A[Ṽ Ṽ⊥], ĀGN =
(
[Ũ Ũ⊥]∗A[Ṽ Ṽ⊥]

)
GN,

[
Ir
0

]
,

[
Ir
0

]

=⇒ ĀGN = Ā−
[
0 0

0 Ā22 − Ā21Ā
†
11Ā12

]
=: Ā− EGN

] Corollary 5.1
(L., Al Daas, Nakatsukasa, 2024)

Define

τi =
max{∥Ā12∥2, ∥Ā21∥2}

minj |σi (Ā)− σj

(
Ā22

)
| − 2 ∥EGN∥2

.

Then, for each i , if τi > 0

|σi (A)− σi (AGN)| = |σi (Ā)− σi (ĀGN)| ≤
∥∥∥Ā22 − Ā21Ā

†
11Ā12

∥∥∥
2
τ2i

� τi < 1 necessary to be better than Weyl. If σi (Ā) is far from the spectrum of Ā22 then τi ≪ 1
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ANALYSIS AND COMPARISON

BOUND ON GN APPROXIMATION ERROR · Numerical illustration

• ℓ = 0

• A ∈ R1000×1000

• Uex ,Vex Haar Matrices

• σi (A) exponentially decaying

• [Ṽ ,∼] = qr(A∗Ω, 0)

• [Ũ,∼] = qr(AΩ, 0)

• Ṽ ∈ R1000×200

• Ũ ∈ R1000×200

• Compute pseudoinverses by QR fac-
torization

σi (AGN,Ṽ ,Ũ ) = σi (AṼ (Ũ∗AṼ )†Ũ∗A)
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• [Ũ,∼] = qr(AΩ, 0)
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ANALYSIS AND COMPARISON

COMPARISON OF METHODS · Idea

Single-pass methods

� σSVD
i = σi (AṼ )

� σRR
i = σi (Ũ

∗AṼ )

� σGN
i = σi

(
AṼ (Ũ∗AṼ )†Ũ∗A

)
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THANK YOU!

�

EXTRACTING ACCURATE SINGULAR VALUES FROM APPROXIMATE SUBSPACES

Lorenzo Lazzarino
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