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Problem description
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Problem description

SPECTROMICROSCOPY INTRO Sub-taks

monochromatic X -rays

Overall Goal: Determine identity and spacial distribution of unknown
materials contained in the non-homogeneous sample

focusing
lens 1. (Sub)sampling strategy 2. Analysis
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sanning » Measuring the whole dataset takes hours!

sample stage » Matrix Completion

» Machinery can’t measure a single pixel without measuring its full spatial
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SUBSAMPLING

Mathematal
nsttute

nxny pixels

S
@
g =
© 5
3 = |m T + E
D
Now
» Uniform Raster sampling
P . ™ = T o = - 9
- T == - -
» LoopedASD (Townsend et al, 2022)
Oxford L.LAZZARINO SUBSAMPLING FOR SPECTROMICROSCOPY Internal Seminar, 5th June '25 4/18
Mathematics



Problem description

SUBSAMPLING
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» Uniform Raster sampling Leverage scores
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In principle, ¢(D) ~ ¢(M
» LoopedASD (Townsend et al, 2022) principle, 4(D) ~ £(M)
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Find importance distributions

DETERMINING SPECTRAL IMPORTANCE DISTRIBUTION
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Find importance distributions

GENERAL SCHEME

Algorithm 1

1. Compute leverage scores of M.t
2. Sample sg energies accordingly
3. Change unfolding — F

4. Use ARP on F
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Find importance distributions

GENERAL SCHEME

Algorithm 1

1. Compute leverage scores of M.t
2. Sample sg energies accordingly
3. Change unfolding — F

4. Use ARP on F

Obtained: Spectral and spatial importance distributions
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Experiment design

RASTER IMPORTANCE SAMPLING FOR SPECTRO-MICROSCOPY (RISS)

Mathematcal
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» Use Algorithm 1 to measure a small number of full
energy scans at energies and determine a spatial
importance distribution.

For the non-measured energies
e Set the beam energy to E.

e Sample sg spatial rows from the spatial
importance distribution

e Measure the sampled spatial rows

» Complete the measured dataset using loopedASD
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Experiment design

CUR OVERVIEW

cCUt' R

» "Motivation” of importance distributions
(theoretical guarantees)

» Natural fit for experimental design

» Gives matrix completion (with interpolation of rows)
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Experiment design

CUR IMPORTANCE SAMPLING FOR SPECTRO-MICROSCOPY (CURISS)
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Use Algorithm 1 to measure a small number of full
energy scans at energies and determine a spatial
importance distribution.

Sample sg spatial rows from the spatial importance
distribution

the non-measured energies
e Set the beam energy to E.
e Measure the sampled spatial rows

Complete the measured dataset using CUR
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Adaptive strategy

ADAPTIVE CURISS (ACURISS)

Goal: Adaptively refine the subsampling, starting by CURISS with initial subsampling ratio pp

Refinment [ Stopping Criteria
» How to update the » How can we evaluate the
importance distributions? accuracy of the refined CUR
and understand when to
stop?
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Adaptive strategy

ACURISS Refinment

1. Initial CUR by CURISS with pg

2. Alternate addition of a full energy scan (row of D)
and a spatial row scan (block of columns of D)
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ACURISS Refinment

1. Initial CUR by CURISS with pg

2. Alternate addition of a full energy scan (row of D)
and a spatial row scan (block of columns of D)

New energy scan

» Leverage scores of Myt already computed

» Set to zero for already measured energies
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Adaptive strategy

ACURISS Refinment

1. Initial CUR by CURISS with pg

2. Alternate addition of a full energy scan (row of D)
and a spatial row scan (block of columns of D)

New energy scan New spatial row scan
» Leverage scores of Myt already computed » Create new F
» Set to zero for already measured energies » Do ARP knowing already selected indices
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Adaptive strategy

ACURISS VS CURISS
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Adaptive strategy

ACURISS Stopping Criteria

Goal: Obtain an indicator of the accuracy BUT  Problem: The full matrix D is not available!!

Completion variation: Compare the completed matrix in the current refinement step with the one obtained in
the previous refinement step

|AD;|| = ||D; — Di_1lF < b,

Spectral variation: At each refinement, compute spectral analysis, compare with previous step

||AMI|| 5= HMclustcr(ﬁi) - Mclustcr(f)ffl)”f: <nm
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Adaptive strate,
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